PCOS, Type 2 Diabetes Mellitus, Metabolic Syndrome: How to assess and manage the many faces of insulin resistance

Developed and presented by:
Margaret A. Fitzgerald, DNP, FNP-BC, NP-C, FAAN, DCC, FNAP
President, Fitzgerald Health Education Associates, North Andover, MA
Family Nurse Practitioner, Greater Lawrence (MA) Family Health Center
Adjunct Associate Professor, Frances Payne Bolton School of Nursing, Case Western Reserve University
Member, Pharmacy and Therapeutics Committee, AllWays Health Partners, Boston, MA

Disclosure

• No real or potential conflict of interest to disclose.
• Off label—The use of metformin in PCOS will be discussed.

Objectives

• Having completed the learning activities, the participant will be able to:
 – Describe the characteristics insulin resistance as part of the disease process in type 2 diabetes mellitus (DM), metabolic syndrome and polycystic ovary syndrome (PCOS).
Objectives (continued)
- Having completed the learning activities, the participant will be able to: (cont.)
 - Identify the mechanism of action and therapeutic benefits for standard and newer medications used to prevent and treat the above-mentioned conditions and their utility in the patient with insulin resistance who is having difficulty getting to treatment goals.

References
Listed within the Presentation

What is insulin resistance?
- Defined
 - State in which a given concentration of insulin produces a less-than-expected biological effect
- Alternative criteria
 - Requirement of ≥200 units of insulin per day to attain glycemic control and to prevent ketosis
 - Source: https://www.ncbi.nlm.nih.gov/pubmed/11460565
With Insulin Resistance

- To maintain NL glucose
 - Patient can produce 5–8 × as much insulin per day when compared to non IR person.
 - Estimated endogenous “dose” as high as 500 units/d
 - Source: AACE Diabetes Guidelines, Endocr Pract, 2002;8 (Supp 1)

Acanthosis Nigricans=Cutaneous Manifestation of Hyperinsulinemia
Consequences of Hyperinsulinemia = HTN, Difficult to Control HTN

- Enhances
 - Renal tubule reabsorption of sodium, leading to an increase in blood pressure
 - Meds counteracting this? Thiazide diuretics

(continued)

- Endothelial dysfunction via reduced nitric oxide production, leading to
 - Vasoconstriction, platelet aggregation, altered vessel membrane permeability and subsequent microalbuminuria
 - Meds counteracting this? ACEI/ARB, CCB

Effects of Increased Sympathetic Nervous System Activity in DM

- Increased
 - Blood pressure
 - Free fatty acid levels
 - Myocardial utilization of free fatty acids
 - Myocardial O₂ consumption
 - Myocardial ischemia
 - Proarrhythmic effects
 - Meds counteracting this? Alpha-beta blocker, beta blocker

Sources:
- Fonarow GC. AJM. 2004;116:76S-88S.
- Bell DSH. AJC. 2004;93:49–52.
HTN, CVD and IR

- Hyperinsulinemia effects
 - Increased vascular smooth muscle proliferation
 - Greater responsivity to angiotensin II
 - Enhanced sympathetic activation

What is the clinical consequence?

Hypertension
Dyslipidemia
Glucose intolerance
Major components of metabolic syndrome

Lifestyle Modification Recommendations in HTN, Dyslipidemia, IR

<table>
<thead>
<tr>
<th>Modification</th>
<th>Recommendation</th>
<th>Average SBP reduction rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical activity</td>
<td>Aerobic (90–150 min/wk)</td>
<td>Hypertension: -5/8 mm Hg</td>
</tr>
<tr>
<td></td>
<td>Dynamic resistance (90–150 min/wk)</td>
<td>Normotension: -2/4 mm Hg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypertension: -4 mm Hg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normotension: -2 mm Hg</td>
</tr>
</tbody>
</table>
Lifestyle Modification Recommendations in HTN, Dyslipidemia, IR (continued)

<table>
<thead>
<tr>
<th>Modification</th>
<th>Recommendation</th>
<th>Average SBP reduction rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical activity (cont.)</td>
<td>Isometric resistance (4 × 2 min [hand grip], 1 min rest between exercises, 3 sessions/wk)</td>
<td>Hypertension: -5 mm Hg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normotension: -4 mm Hg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are adipose cells simply fat storers or metabolically active?

- **Old thought**
 - Fixed state where these cells increase and decrease in size but not in number

Are adipose cells simply fat storers or metabolically active? (continued)

- **Newer thought**
 - Secrete specialized cytokines (adipokine) including TNF
 - TNF exacerbates insulin resistance by desensitizing insulin receptors.
Are adipose cells simply fat storers or metabolically active?
(continued)

• “Adipose tissue also contains numerous macrophages, which provide a rich source of TNF- and interleukin-6, consistent with the view that adiposity is a form of chronic, low-grade inflammation.”

Visceral vs. Subcutaneous Fat

Fat is a problem, but does the way you get rid of it make a difference?

• Conclusion
 – Abdominal liposuction does not significantly improve obesity-associated metabolic abnormalities.
 – Decreasing adipose tissue mass alone will not achieve the metabolic benefits of weight loss.
International Diabetes Federation (IDF) Definition Metabolic Syndrome

- Central obesity (defined as waist circumference 37 inches [≥94 cm] for Europid men and 31.5 inches [≥80 cm] for Europid women, with ethnicity specific values for other groups)

International Diabetes Federation (IDF) Definition Metabolic Syndrome (continued)

- Plus any two of the following four factors
 - Raised TG level
 - ≥150 mg/dL (1.7 mmol/L) or TG elevation treatment
 - Reduced HDL cholesterol
 - <40 mg/dL (1.03 mmol/L) in males and <50 mg/dL (1.29 mmol/L) in females

International Diabetes Federation (IDF) Definition Metabolic Syndrome (continued)

- Plus any two of the following four factors (cont.)
 - Raised blood pressure
 - Systolic BP ≥130 mm Hg or diastolic BP ≥85 mm Hg or treatment of previously diagnosed hypertension
 - Raised fasting plasma glucose (FPG)
 - ≥100 mg/dL (5.6 mmol/L) or previously diagnosed type 2 diabetes
Medications Aimed at Insulin Sensitization, Reducing Insulin Resistance

• Biguanide
 • Metformin
 – Inexpensive, 4+ decades of use data
 – Reduces free testosterone by approx. 25% in women with hyperandrogenism
 – Helpful at managing hyperglycemia, glucose intolerance, prevention of T2DM

Metformin for DM Prevention

• Metformin therapy for prevention of type 2 diabetes can be considered in those at highest risk for developing diabetes, such as those with multiple risk factors, especially if demonstrated progression of hyperglycemia (i.e., A1c ≥6% [0.06 proportion]) despite lifestyle interventions.
 – 1500–2000 mg per day as typical dose

True or false?

Metformin use is potentially associated with the following changes in lipid profile:
 ↓ LDL, ↑ HDL, ↓ TG. Yes
Metformin use increases risk of vitamin B₁₂ deficiency due to B₁₂ malabsorption, risk appears dose- and length-of-therapy-dependent. Yes
Should we focus on fasting glucose? Postprandial glucose?

• “Early and intensive glycemic control, using regimens which recreate a physiological insulin profile, controlling postprandial as well as fasting glucose levels, offers the most promise for preserving beta-cell function, decreasing disease progression, and reducing the chronic complications of diabetes.”

Should we be checking insulin or C-peptide levels?

• No specific test for degree of insulin resistance
 – Checking end-product of IR such as glucose status

• Not recommended
 – Insulin levels
 – C-peptide levels

C-peptide vs. Insulin Levels Produced at the Same Rate

• Insulin
 – Proinsulin or insulin antibodies interfere with insulin assays
 – Released from pancreas, large hepatic first-pass effect: End result= $T_{1/2}$ = 4 mins
 – Poor reflection of insulin status

 Image source: Created by Isaac Yonemoto
 https://commons.wikimedia.org/wiki/File:InsulinHexamer.jpg
C-peptide vs. Insulin Levels (continued)

• C-peptide
 – Connects insulin’s A-chain to its B-chain
 – More reliable indicator of insulin secretion
 • Not extensively hepatically cleared by the liver
 • T½=30 minutes

Image source: JaGa
https://commons.wikimedia.org/wiki/File:C-Peptide.svg

C-peptide vs. Insulin Levels (continued)

• Only C-peptide source
 – Endogenous insulin
 • Can help distinguish ability of pancreas to release insulin vs. exogenous insulin
 • Potentially helpful in distinguishing T1 from T2DM in a person who presents on exogenous insulin

Special Nutritional Consideration in IR

• Vitamin D
 – Suggest link between inability to maintain appropriate glucose levels and vitamin D deficiency
 • No specific target vitamin D level set
 – Minimum supplementation at vitamin D₃ 600 international units daily
Special Nutritional Consideration in IR (continued)

- Chromium picolinate
 - Supplements containing 200–1,000 mcg chromium as chromium picolinate a day have been found to improve blood glucose control.

- Magnesium deficiency
 - Associate with IR, no supplement recommendations
 - Source: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058278

Source

The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology

Definitions

- Fatty liver disease—The accumulation of fat in the hepatocyte
 - Alcoholic fatty liver disease (AFLD)
 - Nonalcoholic fatty liver disease (NAFLD)
- Hepatic steatosis
 - Another way of saying fatty liver disease

Nonalcoholic Fatty Liver Disease (NFLAD)

- Etiology
 - Triglyceride accumulation in hepatocytes
- Prevalence
 - 20 to 30% of adults in the general population in Western countries
 - 70 to 90% among persons who are obese or have diabetes

Nonalcoholic Steatohepatitis (NASH)

- Defined
 - Presence of hepatic steatosis and inflammation with hepatocyte injury (ballooning) with or without fibrosis
NAFLD
Established Risk Factors

• Obesity
• Type 2 DM
• Dyslipidemia
• Metabolic syndrome
 – Source: https://www.gastrojournal.org/article/S0016-5085(12)00494-5/fulltext

NAFLD Risk Factors
Emerging Associations

• PCOS
• Obstructive apnea
• Hypothyroidism
• Hypopituitarism
• Hypogonadism

Nonalcoholic Steatohepatitis
Alcohol Abuse Excluded

• Initial findings
 – Elevated aminotransferase
 • Exclusion of viral, metabolic, other causes
• Histologic diagnosis
 – Liver biopsy findings similar to alcoholic liver disease including Mallory bodies, ballooning hepatocyte degeneration
NAFLD Lab Findings

- AST, ALT
 - Seldom >3 × ULN
- ALT:AST ratio
 - Usually >1
- ALP, GGT
 - Up to 2–3 × ULN in less than ½
- OK to take a statin? Yes

NAFLD Lab Findings (continued)

- Bilirubin, albumin, protime INR
 - Usually NL, particularly in earlier disease
 - Abnormalities usually mark advanced or severe hepatic disease

Liver Biopsy in NAFLD

- “Gold Standard” for diagnosis
- Helps rule in or out other diagnoses
NAFLD Treatment Options

• Lifestyle modification
 – Weight loss, increased physical activity aimed to better control glucose, enhance insulin sensitivity, improving lipid control

• Metformin
 – Helpful for glucose control but use does not alter histologic changes in NASH

Vitamin E (800 international units/d) was superior to placebo for the treatment of nonalcoholic steatohepatitis in adults without diabetes.

NAFLD Pharmacologic Therapy

• Pioglitazone 30—45 mg daily
 – Improved steatosis, inflammation and liver enzymes

• Adverse effect
 – Weight gain
 – Long-term effects in non-diabetics are unknown.
NAFLD Pharmacologic Therapy (continued)

- Glucagon-like peptide-1 agonists
 - Liraglutide once daily × 48 weeks was associated with greater resolution of NASH and less progression of fibrosis.
 - More studies are needed to determine if GLP-1 agonists could be considered specifically for the treatment of NASH.

IR in all tissues?

- Resistant to insulin action
 - Liver, adipose tissue, muscle
 - Pancreas produces more insulin to achieve desired effect
- Sensitive to insulin action
 - Ovary
 - High levels of circulating insulin lead to increased ovarian androgen production, hyperandrogenism

Pathophysiological Characteristics of Polycystic Ovary Syndrome (PCOS)

Rotterdam PCOS Criteria

- ≥2 of the following manifestations
 - Irregular or absent ovulation
 - Elevated levels of androgenic hormones
 - Enlarged ovaries containing at least 12 follicles each
 - If evidence of hyperandrogenism and oligo-ovulation, then imaging for polycystic ovaries not required.

- Other conditions ruled out
 - Source: https://emedicine.medscape.com/article/256806-overview

Diagnostic Testing in PCOS

- Transvaginal ultrasonography
 - Enlarged ovaries with increased stroma, multiple subcapsular small follicles
 - Present in 10–90% of women with PCOS but also up to 25% of women without the condition

Polycystic Ovaries with “String of Pearls” Appearance
Additional PCOS Consequences

• Increased androgens
 – Decreased SHBG production in response to hyperinsulinemia = more free androgen

Polycystic Ovary Syndrome
True or false?

• PCOS affects about 5 to 10% of women of childbearing age. True
• PCOS is the most common cause of anovulatory infertility in developed countries. True

Laboratory Evaluation in Suspected PCOS

• Largely aimed to rule out other conditions
 – TSH
 • Rule out hypothyroidism
 – Serum prolactin level
 • Evaluation of anterior pituitary function
Laboratory Evaluation in Suspected PCOS (continued)

- Largely aimed to rule out other conditions (cont.)
 - Serum 17-hydroxyprogesterone (17-OHPG) level
 - Evaluation of adrenal function
 - Free testosterone levels
 - Evaluation of hyperandrogenic state
- Additional testing as directed by patient presentation

PCOS Current Recommendations

- Evaluation should include
 - Excluding alternate androgen excess disorders
 - Risk factors for endometrial cancer
 - Mood disorders
 - Obstructive sleep apnea
 - DM
 - CVD

Emerging PCOS Treatment Options

- Omega-3 fatty acid supplementation to reduce liver fat content and cardiovascular risk factors
- Treating vitamin D deficiency
 - Source: https://emedicine.medscape.com/article/256806-overview
Acne and Hormones
What is the connection?

• What causes increased sebum production?
 – Abnormal circulating androgen levels present in majority of women with severe acne.
 – Part of PCOS pathophysiology

Estrogen supplementation
 – Increases available sex hormone binding globulin (SHBG)

Results
 – Lower free androgen levels
 – Also potentially lowers free estrogen levels

Spironolactone (Aldactone®)
 – Antiandrogen

COC Use in Women with Acne Vulgaris, PCOS

Low-dose OCs/Patch/Ring, Spironolactone=Antiandrogenic

• Improvement
 – Acne, usually after 3 months use
 – Hirsutism, usually after 6 months use
 • Typically with hirsutism, condition improvement is modest but does not worsen.
PCOS
Current Recommendations
- Hormonal contraceptives are the first-line management for menstrual abnormalities and hirsutism/acne in PCOS.
 - Best-studied choice and likely most clinically effective, combined hormonal contraception (estrogen/progestin) in pill, patch or ring.
 - Source: http://www.medscape.com/viewarticle/557087_1

Is “regulating the period” enough?
- “However, given the metabolic derangements associated with the polycystic ovary syndrome, it seems prudent and appropriate to plan long-term therapy that addresses not only management of the consequences of androgen excess and anovulation but also the new goals of ameliorating insulin resistance and reducing the risks of type 2 diabetes and cardiovascular disease.”

PCOS True or false?
- Only certain birth control pills can help with hirsutism. False
- Once under control, the woman can discontinue COCs or spironolactone and the acne and hirsutism will remained improved long-term. False
PCOS
True or false?
(continued)
• Women with PCOS are at increased risk for:
 – Endometrial cancer. True
 – Ovarian cancer. False
 – Hypertriglyceridemia. True

• In the woman with PCOS and amenorrhea who does not want to take COCs, cyclic progesterone/progestin therapy should be considered. True
 – Source: https://emedicine.medscape.com/article/256806-overview

Source: van der Vane et al. Contraception. 41:345-352.
www.contraceptiononline.org
PCOS
True or false?
(continued)
• In the woman with PCOS who wants to conceive, which of the following are treatment options to enhance ovulation?
 – Weight loss in overweight/obesity True
 – Clomiphene (Clomid®) 2nd-line for inducting ovulation

PCOS
True or false?
(continued)
• In the woman with PCOS who wants to conceive, which of the following are treatment options to enhance ovulation?
 (cont.)
 – Metformin Metformin helpful with menstrual regulation but not helpful for enhanced fertility.
 – Letrozole (Femara®) First-line for ovulation induction

End of Presentation
Thank you for your time and attention.
Margaret A. Fitzgerald,
DNP, FNP-BC, NP-C, FAANP, CSP, FAAN, DCC, FNAP
www.fhea.com cs@fhea.com
• Images/illustrations: Unless otherwise noted, all images/illustrations are from open sources, such as the CDC or Wikipedia or property of FHEA or author.
• All websites listed active at the time of publication.

Copyright Notice
Copyright by Fitzgerald Health Education Associates
All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission from Fitzgerald Health Education Associates.

Requests for permission to make copies of any part of the work should be mailed to:
Fitzgerald Health Education Associates
85 Flagship Drive
North Andover, MA 01845-6184

Statement of Liability
• The information in this program has been thoroughly researched and checked for accuracy. However, clinical practice and techniques are a dynamic process and new information becomes available daily. Prudent practice dictates that the clinician consult further sources prior to applying information obtained from this program, whether in printed, visual or verbal form.
• Fitzgerald Health Education Associates disclaims any liability, loss, injury or damage incurred as a consequence, directly or indirectly, of the use and application of any of the contents of this presentation.